(1)
Jiang, Y.,
Wang, H.,
Shang, Y.,
Yang, K. Simultaneous removal of aniline, nitrogen and phosphorus in aniline-containing wastewater treatment by using sequencing batch reactor.
Bioresource Technology 2016,
207, pp 422-429.
(2)
Ren, Z.,
Zhu, X.,
Liu, W.,
Sun, W.,
Zhang, W.,
Liu, J. Removal of Aniline from Wastewater Using Hollow Fiber Renewal Liquid Membrane.
Chinese Journal of Chemical Engineering 2014,
22, pp 1187–1192.
(3)
Dvořák, L.,
Lederer, T.,
Jirků, V.,
Masák, J.,
Novák, L. Removal of aniline, cyanides and diphenylguanidine from industrial wastewater using a full-scale moving bed biofilm reactor.
Process Biochemistry 2014,
49, pp 102–109.
(4)
Jiang, L.,
Liu, L.,
Xiao, S.,
Che, J. Preparation of a novel manganese oxide-modified diatomite and its aniline removal mechanism from solution. Chemical Engineering Journal
2016,
284, pp 609-619
(5)
Zhang, J.,
Wu, Y.,
Qin, C.,
Liu, L.,
Lan, Y. Rapid degradation of aniline in aqueous solution by ozone in the presence of zero-valent zinc,
Chemosphere 2015,
141, pp 258–264.
(6) Delnavaz, M., Ayati, B., Ganjidoust, H. Biodegradation of aromatic amine compounds using moving bed biofilm reactors, Iran. Journal of Environmental Health Science & Engineering 2008, 5, pp 243-250.
(7) Wang, X. J., Xia, S. Q., Chen, L., Zhao, J. F., Renault, N. J., Chovelon, J. M. Nutrients removal from municipal wastewater by chemical precipitation in a moving bed biofilm reactor. Process Biochemistry 2006, 41, pp 824–828.
(8) Rusten, B., Eikebrokk, B., Ulgenes, Y., Lygren, E. Design and operations of the Kaldnes moving bed biofilm reactors, Aquacult. Eng. Aquacultural Engineering 2006, 34, pp 322–331.
(9) Ayati, B., Ganjidoust, H., Mir Fattah, M. Degradation of aromatic compounds using moving bed biofilm reactor. Journal of Environmental Health Science & Engineering 2007, 4, pp 107-112.
(10) Mohan Raju, M., Srivastava, R. K., Bisht, D. C. S., Sharma, H. C., Kumar, A. Development of Artificial Neural-Network-BasedModels for the Simulation of Spring Discharge.
Lecture Notes in Artificial Intelligence2011,
2011, pp 1-11.
(11) Anderson, D., McNeill, G. Artificial Neural Networks Technology, Data & Analysis Center for Software, Kaman Sciences Corporation: New York, 1992.
(14) Sadrzadeh, M., Mohammadia, T., Ivakpour, J., Kasiri, N. Neural network modeling of Pb2+ removal from wastewater using electro-dialysis. Chemical Engineering and Processing: Process 2009, 48, pp 1371–1381.
(15) Sahinkaya, E. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modeling studies. Journal of Hazardous Materials 2009, 164, pp 105–113.
(16) Prakash, N., Manikandan, S. A., Govindarajan, L., Vijayagopal, V. Prediction of biosorption efficiency for the removal of copper(II) using artificial neural networks. Journal of Hazardous Materials 2008, 152, pp 1268–1275.
(17)
Clescerl, L.S.,
Greenberg, A.E.,
Eaton. A.D.
Standard method for the examination water and wastewater, 20
th ed. American Public Health Association: Washington DC.
2005.
(18) Bestamin, O., Ahmet, D. Neural network prediction model for the methane fraction in biogas from field scale landfill bioreactors. Environmental Modelling & Software 2007, 22, pp 15 -822.
(19) Hagan, M. T., Demuth, H. B., Beale, M. H. Neural network design. Stamford, CT: Thomson Learning, 1996.
(20)
Bagheria, M.,
Mirbagheria, S. A.,
Ehteshamia, M.,
Bagherib, Z. Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks.
Process Safety and Environmental Protection 2015,
93, PP 111–123.
(21)
Turkdogan-Aydınol, F. I.,
Yetilmezsoy, K. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater,
Journal of Hazardous Materials 2010,
182, pp 460–471.
(22) Zadeh, L. A. Fuzzy sets. Information and Control 1965, 8, pp 338-353.
(23) Tanaka, H., Uejima, S., Asai, K. Linear regression analysis with fuzzy model, IEEE Transactions on Systems, Man, and Cybernetics: Systems 1982, 12, pp 903-907.
(24) Jung, H. Y., Yoon, J. H., Choi, S. H. Fuzzy linear regression using rank transform method. Fuzzy Sets and Systems 2014, 274, pp 97-108.
(25) Choi, S. H., Buckley, J. J. Fuzzy regression using least absolute deviation estimators. Soft computing 2008, 12, pp 257-263.
(27) Nasrabadi, E., Hashemi, M., hatee, M. G. An LP-based approach to outliers detection in fuzzy regression analysis. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 2007, 15, pp 441-456.
(28) Dubois, D., Prade, H. Fuzzy Sets and Systems: Theory and Applications, Academic Press: New York, 1980.
(29) Badalians Gholikandi, G., Delnavaz, M., Riahi, R. Use of Artificial Neural Network for Prediction of Coagulation/Flocculation Process by PAC in Water Treatment Plant. Environmental Engineering and Management Journal 2011, 10, pp 1719-1725.
(30) Jang, J. S. R. ANFIS: adaptive network based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics: Systems 1993, 23, pp 665–685.
(31)
Salahia, A.,
Mohammadia, T.,
Mosayebi Behbahanib, R.,
Hemmatic, M. Asymmetric polyethersulfone ultrafiltration membranes for oily wastewater treatment: Synthesis, characterization, ANFIS modeling, and performance.
Journal of Environmental Chemical Engineering 2015,
3, pp 170-178.
(32) Wan, J., Huang, M., Ma, Y., Guo, W., Wang, Y., Zhang, H., Li, W., Sun, X.
Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system.
Applied Soft Computing 2011,
11, PP 3238-3246.